Code: 20IT2702A

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2023

FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE (Common for ALL BRANCHES)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

<u> </u>		ı		T 1			
		BL	СО	Max.			
				Marks			
UNIT-I							
1	What are the key criteria for measuring the	L2	CO1	14 M			
	success of AI systems in solving complex						
	problems? Explain how these criteria apply to						
	different AI techniques and production systems.						
OR							
2	Explore the characteristics of both problems and	L2	CO1	14 M			
	production systems in the context of AI. How do						
	the characteristics of a problem influence the						
	choice of AI techniques and search algorithms						
	related to water jug problem?						
			1				
UNIT-II							
3	Explain how A* combines heuristics and cost	L2	CO2	14 M			
	functions to make informed decisions during						
	search. Provide examples to demonstrate the						
	effectiveness of A* in finding optimal solutions.						

OR						
4	Explain the key components of a Constraint	L2	CO2	14 M		
	Satisfaction Problem (CSP), such as variables,					
	domains, and constraints, and discuss how					
	algorithms like backtracking and forward					
	checking can be applied to solve CSPs.					
	UNIT-III					
5	Compare and contrast procedural knowledge and	L2	CO3	14 M		
	declarative knowledge in the context of					
	knowledge representation. Provide real-world					
	examples to illustrate the distinction.					
OR						
6	How do representations and mappings impact	L2	CO ₃	14 M		
	the efficiency and effectiveness of knowledge-					
	based systems? Discuss the challenges					
	associated with selecting appropriate					
	representations and mappings for specific AI					
	applications.					
7	Provide a comprehensive rationale for	L3	CO4	14 M		
'	Provide a comprehensive rationale for employing truth maintenance systems within the	L3		14 IVI		
	context of a depth-first search algorithm.					
OR						
8	Describe the concepts of weak, strong slot and	L3	CO4	14 M		
	filler structures in the context of semantic nets.					

UNIT-V							
9	Define the concept of an "Expert System Shell" and elaborate on how it facilitates the	L3	CO5	14 M			
	development of a fresh expert system tailored to						
	a specific problem by harnessing domain- specific knowledge. Support your explanation						
	with a practical example.						
OR							
10	Discuss the complexities and potential pitfalls of	L3	CO5	14 M			
	goal stack planning in AI. How does goal stack						
	planning handle issues such as goal ordering and						
	goal interaction?						